首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9759篇
  免费   794篇
  国内免费   587篇
电工技术   196篇
综合类   472篇
化学工业   2001篇
金属工艺   861篇
机械仪表   396篇
建筑科学   1182篇
矿业工程   197篇
能源动力   414篇
轻工业   637篇
水利工程   189篇
石油天然气   217篇
武器工业   39篇
无线电   687篇
一般工业技术   1856篇
冶金工业   1187篇
原子能技术   134篇
自动化技术   475篇
  2024年   19篇
  2023年   230篇
  2022年   158篇
  2021年   281篇
  2020年   267篇
  2019年   321篇
  2018年   283篇
  2017年   324篇
  2016年   315篇
  2015年   277篇
  2014年   415篇
  2013年   705篇
  2012年   492篇
  2011年   743篇
  2010年   546篇
  2009年   617篇
  2008年   569篇
  2007年   648篇
  2006年   555篇
  2005年   396篇
  2004年   384篇
  2003年   411篇
  2002年   377篇
  2001年   297篇
  2000年   236篇
  1999年   215篇
  1998年   167篇
  1997年   127篇
  1996年   90篇
  1995年   101篇
  1994年   80篇
  1993年   53篇
  1992年   55篇
  1991年   35篇
  1990年   31篇
  1989年   27篇
  1988年   21篇
  1987年   23篇
  1986年   13篇
  1985年   27篇
  1984年   23篇
  1983年   19篇
  1982年   27篇
  1981年   10篇
  1979年   8篇
  1965年   14篇
  1961年   8篇
  1957年   11篇
  1955年   16篇
  1954年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The construction and examination of meso-structural finite element models of a Chemical-Vapor-Infiltrated (CVI) C/SiC composite is carried out based on X-ray microtomography digital images (IB-FEM). The accurate meso-structural features of the C/SiC composites, which are consisted of carbon fiber tows and CVI-SiC matrix, in particular the cavity defects, are reconstructed. With the IB-FEM, the damage evolution and fracture behaviors of the C/SiC composite are investigated. At the same time, an in situ tensile test is applied to the C/SiC composite under a CT real-time quantitative imaging system, aiming to investigate the damage and failure features of the material as well as to verify the IB-FEM. The IB-FEM results indicate that material damage initially occur at the defects, followed by propagating toward the fiber-tow/SiC-matrix interfaces, ultimately, combined into macro-cracks, which is in good agreement with the in situ CT experiment results.  相似文献   
2.
Large interfacial resistance plays a dominant role in the performance of all-solid-state lithium-ion batteries. However, the mechanism of interfacial resistance has been under debate. Here, the Li+ transport at the interfacial region is investigated to reveal the origin of the high Li+ transfer impedance in a LiCoO2(LCO)/LiPON/Pt all-solid-state battery. Both an unexpected nanocrystalline layer and a structurally disordered transition layer are discovered to be inherent to the LCO/LiPON interface. Under electrochemical conditions, the nanocrystalline layer with insufficient electrochemical stability leads to the introduction of voids during electrochemical cycles, which is the origin of the high Li+ transfer impedance at solid electrolyte-electrode interfaces. In addition, at relatively low temperatures, the oxygen vacancies migration in the transition layer results in the formation of Co3O4 nanocrystalline layer with nanovoids, which contributes to the high Li+ transfer impedance. This work sheds light on the mechanism for the high interfacial resistance and promotes overcoming the interfacial issues in all-solid-state batteries.  相似文献   
3.
Hydrodynamics characteristics of a fast and highly exothermic liquid–liquid oxidation process with in situ gas production in microreactors were studied using a newly developed experimental method. In the adipic acid synthesis through the K/A oil (the mixture of cyclohexanol and cyclohexanone) oxidation with nitric acid, bubble generation modes were divided into four categories. The gas production became more intensive, unstable, even explosive with increasing the oil phase feed rate and the temperature. A novel automatic image processing method was developed to monitor the instantaneous velocity online by tracking the gas–liquid interface. The axial velocity at the same location was unstable due to the changing gas production rate. Furthermore, the actual residence time was obtained easily with being only 36% of the space–time minimally, beneficial for establishing accurate kinetics and mass transfer models with time participation. Finally, an empirical correlation was developed to predict the actual residence time under different conditions.  相似文献   
4.
A new TiO2-containing bioactive glass and glass-ceramics based on 50SiO2-(45-X)CaO-(XTiO2)-5P2O5 system was designed using a sol–gel technique (where X = 5, 7.5 and 10 wt %). The roles of the crystallization behavior and physicochemical characteristics of the designed glass and glass-ceramics which were played in the introduction of TiO2 substitutions were investigated. Moreover, cell proliferation and differentiation were evaluated against human osteosarcoma cells (Saos-2). The TiO2/CaO replacements led to the formation of a stronger glass structure and thus increased thermal parameters and the chemical stabilization of the designed materials. The FTIR data confirmed the existence of Ti within the glass and glass-ceramics samples, and no remarkable effect on their chemical integrity was observed. The XRD patterns indicated that calcium-containing minerals, including Ca2SiO4,Ca3(PO4)2, Ca(Ti,Si)O5, CaTiSiO5, and Ca15(PO4)2·(SiO4)6 phases were developed as a role of structure/texture under the applied heat-treatment. The results of the cytotoxicity test proved that a safe sample dose is 12–50 μg/ml, at which cell viability is ≥ 85%. The cell differentiation determined by ALP test proved the superiority of glass-ceramics compared with their native glasses. Therefore, the obtained materials could be safely used as novel biocompatible materials for the regeneration of bone tissue.  相似文献   
5.
《Ceramics International》2022,48(4):5083-5090
Directional lamellar porous titanium scaffolds are widely used as bone implant bearing materials because of their anisotropic pore structure. Their mechanical properties can be effectively improved by enhancing the strength of pore walls through the introduction of ceramics. In this work, porous titanium implants were prepared by freeze casting combined with TiH2 decomposition. The graphene was introduced into the pore walls of porous titanium, which could transform into titanium carbide (TiC) in situ upon sintering. TiC was evenly distributed in the lamellar pore walls, and the interface was well bonded. The compression strength of the fabricated implants was up to 389.94 MPa when the graphene content was 3 wt%, which was 377.8% times as high as the porous titanium. The crack propagation was resisted by TiC because of the “pinning” effect on the pore wall. Some of TiC were pulled out from the matrix, and others were fractured. The strength of the fabricated implants was improved significantly by the large consumption of fracture energy. Also, fabricated porous titanium implants with TiC are suitable for bone implantation.  相似文献   
6.
Metal-organic frameworks (MOFs) have emerged as efficient electrocatalysts due to the features of high specific surface area, rich pore structure and diversified composition. It is still challenging to synthesize self-supporting MOF-based catalysts using simple and low-cost fabrication methods. Herein, we successfully fabricated Ni-doped MIL-53(Fe) supported on nickel-iron foam (Ni-MIL-53(Fe)/NFF) as efficient electrocatalyst. A facile two-step solvothermal method without adding any metal salts was used, which can simplify the fabrication process and reduce the experimental cost. In the fabrication process, the bimetallic Ni-MIL-53(Fe)/NFF was in situ converted from an intermediate NiFe2O4/NFF. The obtained material exhibits outstanding electrocatalytic oxygen evolution performance with a low overpotential of 248 mV at 50 mA cm?2, and a small Tafel slope of 46.4 mV dec?1. This work sheds light on the simple and efficient preparation of bimetallic MOF-based material, which is promising in electrocatalysts.  相似文献   
7.
Here, a fluoride-assisted route for the controlled in-situ synthesis of metal nanoparticles (NPs) (i.e., AgNPs, AuNPs) on polydimethylsiloxane (PDMS) is reported. The size and coverage of the NPs on the PDMS surface are modulated with time and over space during the synthetic process, leveraging the improved yield (10×) and faster kinetics (100×) of NP formation in the presence of F ions, compared to fluoride-free approaches. This enables the maskless preparation of both linear and step gradients and patterns of NPs in 1D and 2D on the PDMS surface. As an application in flexible plasmonics/photonics, continuous and step-wise spatial modulations of the plasmonic features of PDMS slabs with 1D and 2D AgNP gradients on the surface are demonstrated. An excellent spatially resolved tuning of key optical parameters, namely, optical density from zero to 5 and extinction ratio up to 100 dB, is achieved with AgNP gradients prepared in AgF solution for 12 minutes; the performance are comparable to those of commercial dielectric/interference filters. When used as a rejection filter in optical fluorescence microscopy, the AgNP-PDMS slabs are able to reject the excitation laser at 405 nm and retain the green fluorescence of microbeads (100 µm) used as test cases.  相似文献   
8.
In recent years,iron(Fe)based degradable metal is explored as an alternative to permanent fracture fixation devices.In the present work,copper(Cu)is added in Fe-Mn system to enhance the degradation rate and antimicrobial properties.Fe-Mn-xCu(x=0.9,5 and 10 wt.%)alloys are prepared by the melting-casting-forging route.XRD analysis confirms austenite phase stabilization due to the presence of Mn and Cu.As predicted by Thermo-Calc calculations,Cu rich phase precipitations are noticed along the austen-ite grain boundaries.Degradation behaviours of Cu added Fe-Mn alloys are investigated through static immersion and electrochemical polarization where enhanced degradation is found for higher Cu added alloys.When challenged against E.Coli bacteria,the Fe-Mn-Cu alloy media extract shows a significant bac-tericidal effect compare to the base alloy.In vitro cytocompatibility studies,as determined using MG63 and MC3T3-E1 cell lines,indicate increased cell density as a function of time for all the alloys.When implanted in rabbit femur,the newly developed alloy does not show any kind of tissue necrosis around the implants.Better osteogenesis and higher new bone formation are observed with Fe-Mn-10Cu alloy as evident from micro-computed tomography(μ-CT)and fluorochrome labelling.  相似文献   
9.
以川南某浓香型白酒生产企业50年窖龄且发酵正常的窖泥为研究对象。通过高通量测序技术分析细菌群落结构以及放线菌群落结构,利用原位分离法从中分离得到2株放线菌,结合形态鉴定、生理生化和16S rRNA基因序列比对分析确定菌种属,并对其进行耐酸、耐乙醇特性研究,基于风味导向思路,分别对2株菌进行液态培养和固态培养,采用顶空固相微萃取法和气相色谱质谱联用对发酵挥发性产物进行分析,为放线菌的相关研究和应用提供理论参考。结果显示,放线菌在该窖泥样品含有较高操作分类单元(operational taxonomic unit,OTU),相对丰度达(10.7±3.4)%,且主要分布于链霉菌亚目(Streptomycineae)和科里氏杆菌亚目(Coriobacterineae)。采用原位分离法分离放线菌,将分离得到的2株菌编号为A1、A2,菌株A1鉴定为桑氏链霉菌(Streptomyces sampsonii),菌株A2鉴定为鲁地链霉菌(Streptomyces rutgersensis)。菌株A1、A2均可在pH>4.3或乙醇体积分数<6%的环境中生长。菌株A1在液态和固态发酵条件下都会产生大量土臭素以及萜烯类物质,菌株A2在液态条件下能产生多种酯类,其中己酸乙酯相对含量(5.384%)较高,而固态条件下能够检测出大量的3-羟基-2丁酮、2,3-丁二醇和吡嗪类物质。  相似文献   
10.
This study investigated the use of recycled tire-derived aggregate (TDA) mixed with kaolin as a method of increasing the ultimate bearing capacity ( UBC) of a strip footing. Thirteen 1g physical modeling tests were prepared in a rigid box of 0.6 m × 0.9 m in plan and 0.6 m in height. During sample preparation, 0%, 20%, 40%, or 60% (by weight) of powdery, shredded, small-sized granular (G 1–4 mm) or large-sized granular (G 5–8 mm) TDA was mixed with the kaolin. A strip footing was then placed on the stabilized kaolin and was caused to fail under stress-controlled conditions to determine the UBC. A rigorous 3D finite element analysis was developed in Optum G-3 to determine the UBC values based on the experimental test results. The experimental results showed that, except for the 20% powdery TDA, the TDA showed an increase in the UBC of the strip footing. When kaolin mixed with 20% G (5–8 mm), the UBC showed a threefold increase over that for the unreinforced case. The test with 20% G (1–4 mm) recorded the highest subgrade modulus. It was observed that the UBC calculated using finite element modeling overestimated the experimental UBC by an average of 9%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号